Nothing much to see here, just a compilation of mathematical functions that me be of some use to some people.
package {
final public class MathExt extends Object {
//constants
public static const PI:Number = Math.PI;
public static const E:Number = Math.E;
//
//trigonometry
public static function sin(t:Number):Number {
return Math.sin(t);
}
public static function cos(t:Number):Number {
return Math.cos(t);
}
public static function tan(t:Number):Number {
return Math.tan(t);
}
public static function asin(t:Number):Number {
return Math.asin(t);
}
public static function acos(t:Number):Number {
return Math.acos(t);
}
public static function atan(t:Number):Number {
return Math.atan(t);
}
public static function csc(t:Number):Number {
return 1 / Math.sin(t);
}
public static function sec(t:Number):Number {
return 1 / Math.cos(t);
}
public static function cot(t:Number):Number {
return 1 / Math.tan(t);
}
public static function acsc(t:Number):Number {
return Math.asin(1 / t);
}
public static function asec(t:Number):Number {
return Math.acos(1 / t);
}
public static function acot(t:Number):Number {
if(t != 0) {
return Math.atan(1 / t);
} else {
return PI / 2;
}
}
//
//logarithms/powers/exponentials
public static function log(b:Number, a:Number):Number {
return Math.log(a) / Math.log(b);
}
public static function ln(a:Number):Number {
return Math.log(a);
}
public static function sqrt(n:Number):Number {
return Math.sqrt(n);
}
public static function root(a:Number, b:Number):Number {
return Math.pow(a, 1 / b);
}
public static function pow(a:Number, b:Number):Number {
return Math.pow(a, b);
}
public static function exp(b:Number):Number {
return Math.exp(b);
}
//
//numerical
public static function abs(n:Number):Number {
return Math.abs(n);
}
public static function round(n:Number):Number {
return Math.round(n);
}
public static function ceil(n:Number):Number {
return Math.ceil(n);
}
public static function floor(n:Number):Number {
return Math.floor(n);
}
public static function gcd(a:uint, b:uint):uint {
var t:uint;
while(b != 0) {
t = b;
b = a % b;
a = t
}
return a;
}
public static function lcm(a:uint, b:uint):uint {
return a / gcd(a, b) * b;
}
//
//probability
public static function random(a:Number = 0, b:Number = 1):Number {
return a + Math.random() * (b - a);
}
public static function factorial(n:uint):uint {
var s:uint = 1;
while(n > 0) {
s *= n--;
}
return s;
}
public static function perm(n:uint, r:uint):uint {
return factorial(n) / factorial(n - r);
}
public static function comb(n:uint, r:uint):uint {
return perm(n, r) / factorial(r);
}
//
}
}